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ABSTRACT 
 

Zinc oxide is a promising material for creation of novel ultraviolet light sources. In this work we study random laser 
action in a thin ZnO nanocluster film under two-photon pumping. The results are compared with the case of single-
photon pumping. A theoretical model is developed, which shows the effect of boundary conditions on lasing in the film. 
Measurement results of nonlinear transmission are presented and compared with classical two-photon absorption model. 
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1. INTRODUCTION 

 
Wide-bandgap semiconductors have recently attracted interest for their applications in solid-state electronics and optics. 
Zinc oxide (ZnO) is a II-VI semiconductor with a wide bandgap of 3.37 eV and high exciton binding energy of 60 meV 
allowing its applications at room- and higher temperatures. Moreover, recently it has been observed that a 
nanostructured ZnO thin film exhibits very high optical nonlinear properties 1. ZnO has a relatively high refractive index 
2.6, which provides high reflection from the ZnO-air interface. 
 
A random laser uses a highly disordered structure to obtain laser action. Instead of bouncing from one mirror to another, 
the light waves bounce from one particle to another thousand of times before they leave the disordered material 2. 
However, multiple scattering alone is not sufficient to make a laser. A laser requires two ingredients: a material that 
amplifies light, and some feedback mechanism that (temporarily) traps the light for the amplification to be efficient. In 
normal lasers the trapping element is a cavity – two mirrors facing each other with the amplifying material in between. 
In the case of a random laser the cavity is replaced by multiple scattering. In 1968, Letokhov predicted that the 
combination of multiple scattering and light amplification would lead to a form of laser action 3. The emission 
characteristics of a random laser are similar to those of a normal laser: the emission spectrum can be extremely narrow, 
which means that the colour of the emission is well defined, and the output can be pulsed. But unlike a regular laser, a 
random laser will emit randomly in all directions, just like the emission from a common light bulb. 
 
Random laser effect is well known in colloidal and microsized media from experimental point of view 4. But studies in 
the case of nanostructured materials are not so well advanced because of the lack of pure and size controlled ZnO 
nanocluster materials. In this communication, we present excellent optical properties of nanoclusters, prepared by the 
pulsed laser ablation method 5. Well controlled nanostuctured ZnO thin films allow easy observation of random laser 
effect under single photon or multiple photon excitation. In both cases we used femtosecond (130 fs) optical parametric 
amplifier as a pumping source. Excitation wavelengths were 350, 700 nm. 
 
Dependences of emission intensity, spectral width and spectral position of random laser emission on pump laser fluence 
have been studied for various ZnO films. 
 
The results of single- and two-photon pumping spectra treatment are compared. The linear (350 nm) and quadratic 
(700 nm) dependences of lases output intensities on pumping fluence confirm participation of single- and two-photon 
pumping, respectively. It is shown that the ratio of damage and laser action thresholds is higher for single photon 
pumping than for two-photon pumping 
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A strong increase of the laser action threshold with a decrease of laser beam area was observed. The value of threshold 
fluence tends to a constant with increasing area of the spot. The experimental results on spot dependence of laser action 
threshold were compared with the prediction of Letokhov’s theory applied to disordered films.  
 
The effective cavity length was estimated from a period of laser modes of output spectra obtained with high resolution.  
 
The transmission of the nanostructured ZnO films during the two-photon pumping experiments was investigated as a 
function of the intensity of pumping pulses. Saturation in transmission decrease with increasing pumping fluence was 
observed. 
 

2. MATERIALS AND METHODS 
 

Nanoclusters of ZnO were prepared by means of the “pulsed laser deposition” technique 5. This method allows one to 
produce nanoclusters of high purity and to control their size. In this work we present a random laser on particles of zinc 
oxide with the size of 5-10 nm. 

 
Photoluminescence and transmission spectra of a ZnO film 
are shown in fig. 1. From the first one we estimate the band 
gap. Exciton peak position corresponds to the emission 
wavelength. The ratio of the exciton peak amplitude to the 
peak of defects and impurities (500-550 nm) gives 
information about quality 6 of nanocluster film . 

 
The experimental scheme is shown in fig. 2. The system 
consists of “Mai-Tai” generator, “Hurricane” amplifier and 
optical parametric amplifier (OPA) which allows changing 
the pumping wavelength, for example, for two-photon 
excitation. 
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Fig. 1. ZnO film photoluminescence and transmission spectra. 

 

 
Fig. 2. Experimental scheme. 

The laser pulse with duration 130 fs and 
wavelength 350 nm (700 nm) is focalized 
perpendicular to the surface of the film. The 
incident energy is measured by “Molectron” 
energy-meter. The photoluminescence 
emission signal is collected to the 
spectrometer slit in a plane of the film. The 
spectrometer signal is detected by a CCD 
camera and transferred to the computer. 

 

In the case of two-photon excitation transmission experiment is also possible in this setup. 
 
 

3. RESULTS AND DISCUSSION 
 

3.1. Two-photon pumping 
Despite the recent achievements in single-photon pumping 4, 11, 12 it cannot be recognized as the best one. For the 
photons more energetic than a band gap, the absorption coefficient is extremely high α350 nm ≈ 10 5 cm-1. It corresponds 
to the light penetration depth lab ~ 100 nm. This means that for a 1 µm thick film all pumping energy is absorbed near 
the surface. On the contrary, in the case of pumping by two-times weaker photon, characteristic length of absorption is 
much greater. Thus, there is a possibility to pump over all sample’s thickness. It may be favourable for some 
applications. 
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Secondly, wavelengths of excitation and emission are too close to separate in the case of single-photon pumping (350 
and 375 nm). Two-photon pumping wavelength is strongly distinct from emission wavelength (700 and 375 nm). 

 
At the moment, there are no experimental works on two-photon pumping of ZnO. We were the first to study infrared 
(IR) pumping of ZnO. 

 
Changes of emitted spectra as a function of pumping fluence (pulse energy density) 
are shown in fig. 3 for the two-photon pumping case. The spectra clearly show lasing 
modes. Using expression (1) for the Fabri-Perot resonator and the function 7 n(λ) a 
cavity length of random resonator is found: 
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The resonator length l is approximately 20 µm. This result is in agreement with [8]. 
 

Depending on pumping energy, the peak of the laser effect increases, changing its 
position and becoming wider. The stronger peak can be fitted with two Gaussians to 
underline its asymmetry. These peaks correspond to two known mechanisms of 
recombination: exciton-exciton collision and electron-hole plasma recombination 9. 
 
Results of single- and two-photon pumping are compared in fig. 4. The linear (open 
square) and quadratic (open circle) dependences of lasers intensities versus pumping 
fluence can be considered as the ratio between the number of absorbed and emitted 
photons. Thus, this confirms single and two-photon pumping, respectively. The laser 
action threshold corresponds to narrowing of luminescence peak. 
 
The ratio of damage thresholds confirms that the films have different heating (damage) 
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Fig. 3. Emission spectra from ZnO 
thin film. The spectra are shifted 
vertically for clarity. The pumping 
fluences are marked on the left. 

mechanisms. Also, it is obvious that the ratio of the damage and laser effect thresholds is higher for single-photon 
pumping. Thus, from this point of view single-photon pumping is advantageous. 

 
3.2. Single-photon pumping 
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The photoluminescence spectra near the threshold of laser effect in ZnO 
nanoparticles film under single-photon pumping are shown in fig. 5 for 
different pumping energies. 

 
When the pumping energy is a little bit higher than the threshold energy on the 
base of a wide luminescence peak (∆1~20 nm), a weaker peak (∆2~3.6 nm) of 
laser effect appears. The existence of laser modes from the curve for higher 
pumping energy is obvious. 
 
The measured threshold versus spot radius is plotted in Fig. 9. This behaviour 
of the dependence requires careful theoretical analyses which are different for 
the case of single- and two-photon pumping 4 because of the difference in 
absorption depth of pumping light. Qualitatively, the existence of minimum in 
the spot size corresponds to the least spot size ~ 30 µm when the generation is 
possible 10 i. e, to the resonator length. When the pumped area size is increased, 
the lasing threshold decreases to a minimally allowable value and then does not 
change with any further increase11 (fig. 9, a). This can be attributed to the 
existence of a laser action threshold that is independent of spot size and is 
determined by sample properties only. 

Fig. 4. Comparison of single- 
& two-photon pumping. 



3.3. Nonlinear absorption 
As was said earlier, under two-photon pumping, the sample is illuminated over its entire thickness. Therefore, the 
experiment for measurement of two-photon transmission can be conducted by the scheme depicted in fig. 2. Figure 6 
demonstrates experimental values of the dependence of ZnO nanocluster film transmission on pump intensity. 
 

The solution of the two-photon transmission equation 2
0/ InxI δ−=∂∂  is a hyperbolic function 1

00 )1( −+= LInT δ , 

where δ  is the two-photon absorption cross-section, 0n  is the electron concentration, 0I  is the laser intensity at the 
outer boundary of the medium, and L  is the sample thickness. The fit between experimental and theoretical curves may 
be considered to be satisfactory only at small intensities I0 < 20 GW/cm2. At high intensities, nonlinear transmission 
saturation occurs, resulting in the discrepancy between experimental and theoretical data. 
 
Can the curve saturation be attributed to valence band depletion? Knowing pulse energy and band gap width, we obtain 
that the maximum value of free electron concentration in the conduction band is 319max 10 −≈ cmn free . The concentration of 

valent electrons in ZnO is 32310 −≈ cmn ZnO
valent . Thus we obtain ZnO

valentfree nn <<max . Hence, the valence band depletion 
approach cannot explain the transmission saturation observed in our experiment. 
 
The saturation can be explained by over-population of the impurity/defect level in the band gap. In this case the 
nonlinear transmission has a two-step nature. 
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Fig. 5. Photoluminescence and laser effect threshold for ZnO 

nanocluster thin film under 350 nm pumping. 
Fig. 6. Experimental and theoretical nonlinear transmission 

curves. 
 

4. THEORETICAL MODEL 
 

4.1. Random lasing in disordered films. Setting of the problem 
To explain the experimental dependence of laser action threshold on diameter of pumping beam we consider a plane 
film of disordered medium of thickness 2z0 with effective refractive index n2, surrounded by a medium with refractive 
index n1 (air) and a medium with refractive index n3 (substrate) fig. 7. Pumping is provided by the laser beam with 
diameter 2r0. We assume that the pumping intensity is constant within the cylinder: r < r0, -z0 < z< z0. The propagation 
of the emitted light within the medium can be described by the diffusion equation with gain 3, 12. 
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Fig. 7. Geometry of the thin film sample. 



Here I is the intensity (I=Uv, where U is the photon density and v is the light velocity in the medium), D is the light 
diffusion coefficient in the medium ( 3/*vlD =  where *l  is the transport mean free path of the light in the scattering 
medium), g is gain that is determined by the pumping. Boundary conditions (3)-(4) take into account the effect of 
reflection of light at the boundaries of the active medium. Boundary conditions at 0rr =  are not very important and we 
choose them to be 

      0),( 0 =zrI .                               (5) 
 
According to the theory of Letokhov 3, 12, generation of random laser corresponds to existence of a solution of the set 
(2)-(5) that is exponentially growing in time. The substitution of solution in the form ),()exp(),,( zrIttzrI λ=  gives 

Ig
z

IDIDI +
∂

∂
+∆= ⊥ 2

2
λ .                           (6) 

Generation corresponds to the existence of eigen-function of the problem (6), (3)-(5) with eigen-value 0≥λ . The 
variables in the considered problem (6), (3)-(5) are separating. It means that we can find solution in the form: 

)()(),( zIrIzrI zr= . 
 

Equation for the radial part reads as 
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Equation for the z-part reads as 
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The condition of generation 0≥λ  becomes: 

22 bag +≥ .                             (12) 

The task is to find the minimal values of 2b  and 2a  from the eigen-value problems (7)-(8) and (9)-(11). 
 
4.2. Solution of the eigen-value problems 
The solution of the problem (7)-(8) yields: 

2
0

2
01

2 / rDjb = ,                                            (13) 
where 01j  is the first root of the Bessel function. Let us consider the problem (9)-(11). The case ∞→D/1α  
corresponds to the boundary condition 0)( 0 =zI z . This is the case of absence of any reflection at the boundary. This 
condition is the most frequently used one in the theory of random lasers 12. If 0/1 →Dα , one comes to the condition 

0)/(
0

=∂∂ =zzz zI . This corresponds to the existence of an ideal mirror at the surface z = z0. Similarly, ∞→D/2α  leads 

to 0)( 0 =−zI z  and 0/2 →Dα means that 0)/(
0

=∂∂ −= zzz zI . The latter puts an ideal mirror at the surface z = -z0.  

 
4.2.1. Symmetrical case 
It is useful to start consideration of the problem (9)-(11) with the symmetrical case ααα == 21 . 
The solution of equation (9) is 

                                           )cos(azI z = ,      Daa /22 = .                         (14) 



The boundary condition (10), which for the symmetrical case reads )()/( 00
zIzID zzzz α−=∂∂ = , after introducing 

0azx ≡  and 0/ zDp α≡  yields the following equation: 
                                                 pxxctg =)( .                                                                  (15) 
When 0=p  ( ∞→D/α , no reflection from the boundaries), 2/π=x . It means that  
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In the case 0≈p , the solution of eq. (15) reads as 
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If we assume 0=p  (absence of any mirror at the boundaries), then formula (17) means that the presence of weak 
mirrors at the boundaries results in effective increase in the thickness of the film (fig. 8, a)  

αDzzeff += 0 .  (18)МАРИНА 

In the opposite case of strong mirrors: ∞→p , 0→x  and solution of (15) yields: 0
2 / zDa α= , 0

2 / za α= .       (19) 
 

Thus in the case of 100% mirrors, the generation condition (12) will 
depend on film thickness not as 2

0
−z  (16) but rather as 1

0
−z  (19). It is 

important, for example, if pumping is provided electrically through 
big enough highly reflective electrodes. 
As a summary, the solution of the eigen-value problem (9)-(11) for 

the symmetrical case looks like: ⎟⎟
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function )(ξϕ  is determined from the equation: )(ϕξϕ ctg= . 
 
4.2.2. Asymmetrical case 
Let us consider now the non-symmetrical case (9)-(11) when 

21 αα ≠ . The solution of (9) will look as (fig. 8, b): 
                                      )cos( ψ+= azI z                                        (20) 
The substitution of (20) into the boundary conditions (11), (12) yields 
a set of equations for determining a and ψ . After evaluation one 
comes to the equation for a similar to (15): 
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Fig. 8. Solution of z-part in (a) symmetrical 

and (b) asymmetrical case. 

Here, we take: 0azx ≡ , 011 / zDp α≡  and 022 / zDp α≡ . It is seen that, if 21 αα = , (21) transforms to (15). It can 
also be shown that from (21) follows one more quite evident fact: if at one of the boundaries, for instance z = -z0 , we 
have an ideal mirror, i.e., ∞→2p  or, which is just the same, 0)/(

0
=∂∂ −= zzz zI , then the solution of (21) will be 

2/sxx = , where sx  is the solution of a symmetrical problem with 1αα = . This means that the existence of an ideal 
mirror at one of the boundaries doubles the effective thickness of the film.  
 
4.3. Evaluation of the boundary conditions 
According to the paper 13 devoted to the theory of light propagation in disordered media the coefficients in the boundary 
conditions can be estimated as follows: 
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where *l  is the transport mean free path of the light in the scattering medium, 
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here  
  2/))()(()( θθθ IIRRR += ⊥               (25) 

with )(θ⊥R , )(θIIR  being the Fresnel reflection coefficients for intensity of light with s- and p- polarizations. 
 
When integrating over the angle of incidence θ  one should take into account that, if the refractive index of the film is 
higher than the refractive index of the outer media, the total reflection occurs for all cθθ ≥ , where cθ  is the angle of 
total reflection. Therefore, the first integration in (24) gives 
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Let us now make some estimations. 
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For writing down the generation condition one should find 0azx = . This number is the root of the transcendental 

equation (21). To solve this equation we should estimate firstly 011 / zDp α=  and 022 / zDp α= . Both of these 

quantities are proportional to )/( 0
* zl . Thus, the latter parameter plays a crucial role in the considered problem. If 

0
* zl <<  and reflection at the boundaries is not very high, then 0, 21 →pp  and 02/ za π→ , i.e., as in the case of the 

zero boundary conditions (16). That is why we took the zero boundary conditions for the radial part 4. We believe that in 
the radial problem 1)/( 0

* <<rl . If we suppose that in our case λ≈*l  and, hence, take )/( 0
* zl ≈1, then in the 

considered situation 8.101 ≈p  and 7.32 ≈p . The solution of Eq. (21) yields: 4.0≈x . That is 4.00 ≈az  and 

0/4.0 za ≈ . For the absorbing boundary conditions (16) we have 02/ za π= . This means that refraction at the 
boundaries ensures an effective increase in the thickness of the film by 9.3)4.02/( =⋅π  times. 
 
If we put the ideal mirror at the boundary z = -z0 , instead of the film-glass interface, then the solution for x will be two 
times smaller than for the symmetrical problem with 8.1021 ≈= pp , that is 15.02/3.0 ==x . It corresponds to the 
effective increase of the thickness of the film by 5.10)15.02/( =⋅π  times. The generation condition for the gain, 

gainvlg = , reads as 
2
0

2

2
0

24.2(
z
x

r
Dg +≥ ), r0 is the beam radius, 2/0 dz = , d is the thickness of the film, 3/*vlD = , v is 

the light velocity in the medium, *l  is the transport mean free path of the light in the scattering medium. For the 
generally employed absorbing boundary conditions 2/π=x  results of the experiments are fitted in fig. 9. Partially 



reflective boundaries decrease the value of x. The developed theory allows calculating the value of x knowing refractive 
indexes of the film and the value of the parameter )/( 0

* zl . 
 
Note that the above considerations are inaccurate for single-photon pumping because variable separation and, hence, the 
solution become more sophisticated. However, the apparent similarity of the curves in fig. 9 a and 9 b suggests that the 
solution will have no qualitative differences. 
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Fig. 9. Theoretical dependences of laser action threshold on laser beam radius: 
single-photon pumping on the left, and two-photon on the right. 

 
 

CONCLUSION 
 
The random laser effect predicted by Letokhov in 1968 is well known in colloidal and microsized media from the 
experimental point of view. But studies in the case of nanostructured materials are not so well advanced because of the 
lack of pure and size controlled nanocluster materials. In this communication, we considered excellent optical properties 
of well controlled nanostuctured ZnO thin films prepared by the pulsed laser ablation method. These properties allow 
easy observation of random laser effect under two-photon excitation. Two-photon pumping of a ZnO thin film was 
observed and studied for the first time. Comparison of two- and single-photon pumping was carried out. Emission 
intensity, spectral width and spectral position of random laser emission as a function of pump laser fluence have been 
studied for the same ZnO film. 
 
A strong increase of the laser action threshold with decreasing laser beam radius has been observed. The value of 
threshold fluence tends to constant with increasing area of the spot. 
 
Nonlinear transmission of the pumping light in case of two-photon pumping has been observed and discussed. 
 
Theoretical consideration of the effect of boundary conditions on lasing in the disordered film under two-photon 
excitation has been performed. 
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